Quantum cohomology of minuscule homogeneous spaces III. Semisimplicity and consequences

نویسندگان

  • Pierre-Emmanuel Chaput
  • Laurent Manivel
  • Nicolas Perrin
چکیده

We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, once localized at the quantum parameter, has a non trivial involution mapping Schubert classes to multiples of Schubert classes. This can be stated as a strange duality property for the Gromov-Witten invariants, which turn out to be very symmetric.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum cohomology of minuscule homogeneous spaces

We study the quantum cohomology of (co)minuscule homogeneous varieties under a unified perspective. We show that three points Gromov-Witten invariants can always be interpreted as classical intersection numbers on auxiliary homogeneous varieties. Our main combinatorial tools are certain quivers, in terms of which we obtain a quantum Chevalley formula and a higher quantum Poincaré duality. In pa...

متن کامل

Quantum cohomology of minuscule homogeneous spaces II : Hidden symmetries

We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, once localized at the quantum parameter, has a non trivial involution mapping Schubert classes to multiples of Schubert classes. This can be stated as a strange duality property for the Gromov-Witten invariants, which turn out to be very symmetric.

متن کامل

On the quantum cohomology of adjoint varieties

We study the quantum cohomology of quasi-minuscule and quasi-cominuscule homogeneous spaces. The product of any two Schubert cells does not involve powers of the quantum parameter higher than 2. With the help of the quantum to classical principle we give presentations of the quantum cohomology algebras. These algebras are semi-simple for adjoint non coadjoint varieties and some properties of th...

متن کامل

Geometric Positivity in the Cohomology of Homogeneous Spaces and Generalized Schubert Calculus

We describe recent work on positive descriptions of the structure constants of the cohomology of homogeneous spaces such as the Grassmannian, by degenerations and related methods. We give various extensions of these rules, some new and conjectural, to K-theory, equivariant cohomology, equivariant K-theory, and quantum cohomology.

متن کامل

Equivariant Quantum Cohomology of Homogeneous Spaces

We prove a Chevalley formula for the equivariant quantum multiplication of two Schubert classes in the homogeneous variety X = G/P . As in the case when X is a Grassmannian ([Mi1]), this formula implies an algorithm to compute the structure constants of the equivariant quantum cohomology algebra of X.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017